Part Number Hot Search : 
LZ6V8 10250 08S19 BL59A10 2SA2121 TA0736A FRA805G BXMF1003
Product Description
Full Text Search
 

To Download R1113Z501A-EX Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  low noise 150ma ldo regulator r1113z series no. ea-101-0504 1 outline the r1113z series are cmos-based voltage regulator ics with high output voltage accuracy, extremely low supply current, low on-resistance, and high ripple rejecti on. each of these ics consists of a voltage reference unit, an error amplifier, resistors, a curren t limit circuit, and a chip enable circuit. these ics perform with low dropout voltage and a chip enable function. the line transient response and load transient response of the r1113z series are excellent, t hus these ics are very suitable for the power supply for hand-held communication equipment. the output voltage of these ics is fixed with high ac curacy. since the package for these ics is wl-csp4-p1 (wafer level csp), high density mounti ng of the ics on boards is possible. features ? ultra-low supply cu rrent................................................ typ. 100 a ? standby mode ................................................................. typ. 0.1 a ? low dropout voltage ....................................................... typ. 0.23v (i out = 100ma 3.0v output type) ? high ripple reject ion ..................................................... ty p. 80db(f = 1khz 3.0v output type) ? low temperature-drift coeffici ent of output voltage...... typ. 100ppm/c ? excellent line regula tion ............................................... typ. 0.05%/v ? high output vo ltage accu racy ........................................ 2.0% ? excellent dynamic response ? small package .............................................................. wl-csp4-p1 (wafer level csp) ? output voltage .................................................. ............. stepw ise setting with a step of 0.1v in the range of 1.5v to5.0v is possible ? built-in chip enable circuit (2 types; a: active low, b: active high) ? built-in fold back protecti on circuit ............................... typ. 30ma (current at short mode) ? ceramic capacitors are recommended to be used with this ic applications ? power source for cellular phones such as gsm, cdma and various kinds of pcs. ? power source for electrical appliances such as cameras, vcrs and camcorders. ? power source for battery-powered equipment.
r1113z 2 block diagram r1113zxx1a r1113zxx1b v out gnd v dd ce vref current limit + - 3 4 2 1 v out gnd v dd ce vref current limit + - 3 4 2 1 selection guide the output voltage, the active type, the packing type, and the taping type for the ics can be selected at the user's request. the selection can be made with designating the part number as shown below; r1113xxx 1x-xx part number a b c d code contents a designation of package type : z:wl-csp4-p1 (wafer level csp) b setting output voltage (v out ) : stepwise setting with a step of 0.1v in t he range of 1.5v to 5.0v is possible. c designation of active type : a : active low type b : active high type d designation of taping type : ex. tr, tl (refer to taping specificatio ns; tr type is the standard direction.)
r1113z 3 pin configuration wl-csp4-p1 3 v dd 4 ce 2 v out bottom view 1 gnd top view 43 12 pin description pin no symbol description 1 gnd ground pin 2 v out output pin 3 v dd input pin 4 ce or ce chip enable pin absolute maximum ratings symbol item rating unit v in input voltage 7.0 v v ce input voltage ( ce or ce pin) -0.3 ~ v in +0.3 v v out output voltage -0.3 ~ v in +0.3 v i out output current 200 ma p d power dissipation 190 mw topt operating temperature range -40 ~ 85 c tstg storage temperature range -55 ~ 125 c
r1113z 4 power dissipation typical characteristics ? measurement conditions mounted on board (wind velocity = 0m/s) board material: fr-4 (double-layer) board size: 40mm 40mm t1.6mm wiring area ratio against the board: 50% ? result power dissipation 465mw thermal resistance 215 c/w temperature topt( c) power dissipation(mw) 0 0 100 200 300 400 500 600 700 25 50 75 100 125 wl-csp-4
r1113z 5 electrical characteristics ? r1113zxx1a topt=25 c symbol item conditions min. typ. max. unit v out output voltage v in = set v out + 1v 1ma < = < = 0.98 v out 1.02 v i out output current v in ? v out = 1.0v 150 ma ? v out / ? i out load regulation v in = set v out +1v 1ma < = < = = set v out + 1v 100 170 a istandby supply current (standby) v in = v ce = set v out + 1v 0.1 1.0 a ? v out / ? v in line regulation set v out + 0.5v < = < = = 30ma 0.05 0.20 %/v rr ripple rejection refer to the electrical characteristics by output voltage v in input voltage 2.0 6.0 v ? v out / ? t output voltage temperature coefficient i out = 30ma ? 40 c < = < = c 100 ppm/ c i lim short current limit v out = 0v 30 ma r pu ce pull-up resistance 2.5 5.0 10.0 m ? v ceh ce input voltage ?h? 1.5 v in v v cel ce input voltage ?l? 0.00 0.25 v e n output noise bw = 10hz to 100khz 30 vrms ? r1113zxx1b topt=25c symbol item conditions min. typ. max. unit v out output voltage v in = set v out + 1v 1ma < = < = 0.98 v out 1.02 v i out output current v in ? v out = 1.0v 150 ma ? v out / ? i out load regulation v in = set v out + 1v 1ma < = < = = set v out + 1v 100 170 a istandby supply current (standby) v in = v ce = set v out + 1v 0.1 1.0 a ? v out / ? v in line regulation set vout + 0.5v < = < = = 30ma 0.05 0.20 %/v rr ripple rejection refer to the electrical characteristics by output voltage v in input voltage 2.0 6.0 v ? v out / ? t output voltage temperature coefficient i out = 30ma ? 40 c < = < = c 100 ppm/ c i lim short current limit v out = 0v 30 ma r pu ce pull-up resistance 2.5 5.0 10.0 m ? v ceh ce input voltage ?h? 1.5 vin v v cel ce input voltage ?l? 0.00 0.25 v e n output noise bw = 10hz to 100khz 30 vrms
r1113z 6 electrical characteristics by output voltage topt = 25c dropout voltage v dif (v) output voltage v out (v) condition typ. max. 1.5 0.50 0.70 1.6 0.45 0.65 1.7 0.40 0.60 1.8 0.34 0.55 1.9 0.28 0.44 2.0 < = v out < = 2.3 0.25 0.35 2.4 < = v out < = 2.7 0.24 0.29 2.8 < = v out < = 5.0 i out = 100ma 0.23 0.26 topt = 25c ripple rejection rr (db) output voltage v out (v) condition typ. max. 1.5 < = v out < = 4.0 80 4.1 < = v out < = 5.0 f = 1khz, ripple 0.5vp-p v in = set v out + 1v 70 operation r1113zxx1a r1113zxx1b v out gnd v dd ce vref r1 r2 current limit + - 3 4 2 1 v out gnd v dd ce vref current limit + - 3 4 2 1 r1 r2 in these ics, fluctuation of output voltage, v out is detected by feedback registers r1, r2, and the result is compared with a reference voltage by the error amplifier, so that a constant voltage is output. a current limit circuit for protection in short mode and a chip enable circuit, are included.
r1113z 7 technical notes when using these ics, consider the following points: phase compensation in these ics, phase compensation is made for securing st able operation even if the load current is varied. for this purpose, use a capacitor c out with good frequency characteristics and esr (equivalent series resistance). we use ceramic capacitors for evaluation of these ics. recommended capacitors ; grm40x5r225k6.3 (murata) grm40-034x5r335k6.3 (murata) grm40-034x5r475k6.3 (murata) (note: when the additional ceramic capacitors are connecte d to the output pin with an output capacitor for phase compensation, the operation might be unstable. because of this, test these ics with as same external components as ones to be used on the pcb.) pcb layout make v dd and gnd lines sufficient. if their impedance is hi gh, noise pickup or unstable operation may result. connect a capacitor with a capacitance value as much as 2.2 f or more between v dd and gnd pin, and as close as possible to the pins. set external components, especially t he output capacitor, as close as possi ble to the ics, and make wiring as short as possible.
r1113z 8 test circuits 3 1 gnd 4 ce r1113zxx1b series 2.2 f out in i out v dd 2 v out 2.2 f 3 1 gnd 4 ce r1113zxx1b series 2.2 f out in i ss v dd 2 v out 2.2 f fig.1 standard test circuit fig.2 supply current test circuit 3 1 gnd 4 ce r1113zxx1b series out in i out v dd 2 v out p. g 2.2 f 3 1 gnd 4 ce r1113zxx1b series 2.2 f out in v dd 2 v out i1 i2 2.2 f fig.3 ripple rejection, line transient fig.4 load transient response test circuit response test circuit typical application gnd ce r1113zxx1a series cap. + in out v dd v out cap. + gnd ce r1113zxx1b series cap. + in out v dd v out cap. + (external components) output capacitor ; ceramic 2.2 f (set output voltage in the range from 2.6 to 5.0v) ceramic 4.7 f (set output voltage in the range from 1.5 to 2.5v) input capacitor ; ceramic 2.2 f
r1113z 9 typical characteristics 1) output voltage vs. output current topt=25 c r1113z201b r1113z301b 2.5 2 1.5 1 0.5 0 output current i out (ma) output voltage v out (v) 0 200 300 400 500 100 v in =2.3v v in =2.5v v in =3.0v v in =4.0v 3.5 2 2.5 3 1.5 1 0.5 0 output current i out (ma) output voltage v out (v) 0 200 300 400 500 100 v in =3.3v v in =3.5v v in =4.0v v in =5.0v r1113z401b r1113z501b 5 4 3 2 1 0 output current i out (ma) output voltage v out (v) 0 200 300 400 500 100 v in =4.3v v in =4.5v v in =5.0v v in =6.0v 6 4 5 3 2 1 0 output current i out (ma) output voltage v out (v) 0 200 300 400 500 100 v in =5.3v v in =5.5v v in =6.0v v in =7.0v 2) output voltage vs. input voltage topt=25 c r1113z201b r1113z301b 2.2 1.8 2 1.6 1.4 1.2 1 input voltage v in (v) output voltage v out (v) 1346 57 2 i out =1ma i out =30ma i out =50ma 3.2 2.8 3 2.6 2.4 2.2 2 input voltage v in (v) output voltage v out (v) 1346 57 2 i out =1ma i out =30ma i out =50ma
r1113z 10 r1113z401b r1113z501b 4.2 3.8 4 3.6 3.4 3.2 3 input voltage v in (v) output voltage v out (v) 1346 57 2 i out =1ma i out =30ma i out =50ma 5.2 4.8 5 4.6 4.4 4.2 4 input voltage v in (v) output voltage v out (v) 1346 57 2 i out =1ma i out =30ma i out =50ma 3) dropout voltage vs. output current r1113z201b r1113z301b 0.6 0.4 0.5 0.3 0.2 0.1 0.0 output current i out (ma) dropout voltage v dif (v) 0 50 100 150 topt=-40?c topt=25?c topt=85?c 0.6 0.4 0.5 0.3 0.2 0.1 0.0 output current i out (ma) dropout voltage v dif (v) 0 50 100 150 topt=-40?c topt=25?c topt=85?c r1113z401b r1113z501b 0.6 0.4 0.5 0.3 0.2 0.1 0.0 output current i out (ma) dropout voltage v dif (v) 0 50 100 150 topt=-40?c topt=25?c topt=85?c 0.6 0.4 0.5 0.3 0.2 0.1 0.0 output current i out (ma) dropout voltage v dif (v) 0 50 100 150 topt=-40?c topt=25?c topt=85?c
r1113z 11 4) output voltage vs. temperature r1113z201b r1113z301b 2.04 2.01 2.02 2.03 2.00 1.99 1.98 1.97 1.96 temperature topt(?c) output voltage v out (v) -50 0 25 -25 50 75 100 v in =3.0v, i out =30ma 3.06 3.02 3.04 3.00 2.98 2.96 2.94 temperature topt(?c) output voltage v out (v) -50 0 25 -25 50 75 100 v in =4.0v, i out =30ma r1113z401b r1113z501b 4.08 4.00 4.02 4.04 4.06 3.98 3.96 3.94 3.92 temperature topt(?c) output voltage v out (v) -50 0 25 -25 50 75 100 v in =5.0v, i out =30ma 5.10 5.00 5.02 5.04 5.06 5.08 4.98 4.96 4.92 4.94 4.90 temperature topt(?c) output voltage v out (v) -50 0 25 -25 50 75 100 v in =6.0v, i out =30ma 5) supply current vs. input voltage topt=25 c r1113z201b r1113z301b 100 60 80 40 20 0 input voltage v in (v) supply current i ss ( a) 134 2567 100 60 80 40 20 0 input voltage v in (v) supply current i ss ( a) 134 2567
r1113z 12 r1113z401b r1113z501b 100 60 80 40 20 0 input voltage v in (v) supply current i ss ( a) 134 2567 100 60 80 40 20 0 input voltage v in (v) supply current i ss ( a) 134 2567 6) supply current vs. temperature r1113z201b r1113z301b 200 150 100 50 0 supply current i ss ( a) -50 0 25 -25 50 75 100 temperature topt(?c) v in =3.0v 200 150 100 50 0 supply current i ss ( a) -50 0 25 -25 50 75 100 temperature topt(?c) v in =4.0v r1113z401b r1113z501b 200 150 100 50 0 supply current i ss ( a) -50 0 25 -25 50 75 100 temperature topt(?c) v in =5.0v 200 150 100 50 0 supply current i ss ( a) -50 0 25 -25 50 75 100 temperature topt(?c) v in =6.0v
r1113z 13 7) dropout voltage vs. set output voltage r1113zxx1b 0.5 0.4 0.3 0.2 0.1 0.0 set output voltage v reg (v) dropout voltage v dif (v) 0.0 2.0 3.0 1.0 4.0 5.0 25ma 50ma 100ma 150ma 8) ripple rejection vs. frequency r1113z201b r1113z301b 120 80 100 60 40 20 0 ripple rejection rr(db) 0.1 1 10 100 frequency f(khz) i out =1ma i out =30ma i out =50ma v in =3.0v+0.5vp-p, c out =ceramic 4.7 f 90 60 70 80 50 40 30 20 10 0 ripple rejection rr(db) 0.1 1 10 100 frequency f(khz) i out =1ma i out =30ma i out =50ma v in =4.0v+0.5vp-p, c out =ceramic 2.2 f r1113z401b r1113z501b 90 60 70 80 50 40 30 20 10 0 ripple rejection rr(db) 0.1 1 10 100 frequency f(khz) i out =1ma i out =30ma i out =50ma v in =5.0v+0.5vp-p, c out =ceramic 2.2 f 70 60 50 40 30 20 10 0 ripple rejection rr(db) 0.1 1 10 100 frequency f(khz) i out =1ma i out =30ma i out =50ma v in =6.0v+0.5vp-p, c out =ceramic 2.2 f
r1113z 14 9) ripple rejection vs. input voltage (dc bias) r1113z301b r1113z301b 90 60 70 80 50 40 30 20 10 0 ripple rejection rr(db) 3.1 3.3 3.2 3.4 3.5 input voltage v in (v) f=400hz f=1khz f=10khz i out =1ma, c out =ceramic 2.2 f 80 60 70 50 40 30 20 10 0 ripple rejection rr(db) 3.1 3.3 3.2 3.4 3.5 input voltage v in (v) f=400hz f=1khz f=10khz i out =30ma, c out =ceramic 2.2 f r1113z301b 80 60 70 50 40 30 20 10 0 ripple rejection rr(db) 3.1 3.3 3.2 3.4 3.5 input voltage v in (v) f=400hz f=1khz f=10khz i out =50ma, c out =ceramic 2.2 f 10) input transient response r1113z201b topt=25c v in v out v in = 3.0v ? 4.0v i out = 30ma c in = none c out = 4.7 f tr/tf = 5 s
r1113z 15 r1113z301b topt=25c v in v out r1113z401b topt=25c v in v out r1113z501b topt=25c v in v out v in = 4.0v ? 5.0v i out = 30ma c in = none c out = 2.2 f tr/tf = 5 s v in = 6.0v ? 7.0v i out = 30ma c in = none c out = 2.2 f tr/tf = 5 s v in = 5.0v ? 6.0v i out = 30ma c in = none c out = 2.2 f tr/tf = 5 s
r1113z 16 11) load transient response r1113z201b topt=25c i out v out r1113z301b topt=25c i out v out r1113z401b topt=25c i out v out i out = 50ma ? 100ma v in = 3.0v c in = 2.2 f c out = 4.7 f tr/tf = 5 s i out = 50ma ? 100ma v in = 4.0v c in = 2.2 f c out = 2.2 f tr/tf = 5 s i out = 50ma ? 100ma v in = 5.0v c in = 2.2 f c out = 2.2 f tr/tf = 5 s
r1113z 17 r1113z501b topt=25c i out v out technical notes when using these ics, consider the following points: in these ics, phase compensation is made for securing st able operation even if the load current is varied. for this purpose, use a capacitor c out with good frequency characteristics and esr (equivalent series resistance) of which is in the range described as follows: 4 r1113zxx1b ce 3 v in v in ceramic cap. ceramic cap. spectrum analyzer esr 2 v out i out 1 gnd s.a. measuring circuit for white noise; r1113zxx1b i out = 50ma ? 100ma v in = 6.0v c in = 2.2 f c out = 2.2 f tr/tf = 5 s
r1113z 18 the relations between i out (output current) and esr of an output ca pacitor are shown below. the conditions when the white noise level is under 40 v (avg.) are marked as the hatched area in the graph. (note: if additional ceramic capacitors are connected to the output pin with output capacitor for phase compensation, the operation might be unstable. because of this, test these ics with as same external components as ones to be used on the pcb.) (1) v in = v out + 1v (2) frequency band: 10hz to 1mhz (3) temperature: 25 c r1113z201b r1113z201b 100 10 1 0.1 0.01 0.001 i out (ma) 090 30 60 150 esr ( ? ) 120 c out =2.2 f, c in =2.2 f 100 10 1 0.1 0.01 0.001 i out (ma) 090 30 60 150 esr ( ? ) 120 c out =4.7 f, c in =2.2 f r1113z301b r1113z301b 100 10 1 0.1 0.01 0.001 i out (ma) 090 30 60 150 esr ( ? ) 120 c out =2.2 f, c in =2.2 f 100 10 1 0.1 0.01 0.001 i out (ma) 090 30 60 150 esr ( ? ) 120 c out =4.7 f, c in =2.2 f


▲Up To Search▲   

 
Price & Availability of R1113Z501A-EX

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X